

## **v<sub>2</sub> and NCQ-scaling in a hadronic transport model**

Yan Lu, F. Liu, Z. Liu, M. Bleicher, H. Stocker, P. Sorensen, N. Xu

- (1) Introduction
  - Can hadronic interactions reproduced some of the observed features?
  - Why?
- (2) RQMD model results
- (3) Summary

### **Equation of State**



$$\begin{aligned} \partial_{\square} T^{\square\square} &= 0 \\ \partial_{\square} j^{\square} &= 0 \qquad j^{\square}(x) = n(x) u^{\square}(x) \\ T^{\square\square} &= \left[ \square(x) + p(x) \right] u^{\square} u^{\square} \square g^{\square\square} \square p(x) \end{aligned}$$

With given degrees of freedom, the EOS - the system response to the changes of the thermal condition - is fixed by its **p** and **T** or **[]** 



#### Equation of state:

- **EOS I**: relativistic ideal gas:  $p = \frac{7}{3}$ 

- EOS H: resonance gas: p ~ ∏6

- **EOS Q**: Maxwell construction:

 $T_{\text{crit}}$ = 165 MeV,  $B^{1/4}$  = 0.23 GeV  $\Pi_{at} = 1.15 \text{ GeV/fm}^3$ 

P. Kolb et al., Phys. Rev. C62, 054909 (2000).



## Anisotropy parameter v<sub>2</sub>

coordinate-space-anisotropy

momentum-space-anisotropy





$$v_2 = \langle \cos 2 \square \rangle, \quad \square = \tan^{\square 1}(\frac{p_y}{p_x})$$

Initial/final conditions, EoS, degrees of freedom



## Partonic collectivity at RHIC

//Nxu/student/YanLu/paper1

PHENIX: PRL91, 182301(03) STAR: PRL92, 052302(04)



From v<sub>2</sub>, hadron spectra, and the scaling properties:

- ⇒ Partonic collectivity has been attained at RHIC!
- Deconfinement, model dependently, has been attained at RHIC!



## Open charm v<sub>2</sub> - a comparison



- 1) Constituent Quark Scaling for open charm hadron production?
- 2) Flow of charm-quark and the thermalization among light flavors?
- 3) ...????

X. Dong, S. Esumi, P. Sorensen, N. Xu and Z. Xu, Phys. Lett. **<u>B597</u>**, 328(2004).

## BERKELEY LAB //NXu/student/YanLu/paper1

#### **Quark Recombination**



- 1) Recombination or coalescence is a natural process for converting partons to hadrons hadronization. For an exponential parton spectrum, recombination is more effective than fragmentation
- 2) A baryons are shifted to higher  $p_T$  than mesons, for same quark distribution.

R. Fries nucl-th/04010085



### Figure 1



Calculations under-predict the absolute values of  $\rm v_2$  - lack of hot and dense partonic interactions in the model.



#### Figure 2



- 1) At low  $p_T$  region: mass ordering feature of hydrodynamic motion
- 2) Hadron type dependence at the intermediate  $p_T$  region vacuum hadronic cross sections used in the model







- Higher p<sub>T</sub> hadrons freezeout with higher values of v<sub>2</sub>
- Earlier freeze-out hadrons have higher values of v<sub>2</sub>.
   After 15 fm/c,not much changes in v<sub>2</sub>.



#### Figure 4



- 1) At low p<sub>T</sub> region: pions do not following the scaling resonance decay effects
- 2) At  $p_T/N_q > 0.5$  GeV/c, scaling seems to work except  $\square$ -meson

# BERKELEY LAB //NXU/Student/Yanlu/paper1

### Summary

- 1) RQMD under predicts absolute values of v<sub>2</sub>, due to lack of hot and dense partonic interaction in the model.
- 2) Low p<sub>T</sub> region: hadron mass dependence observed via rescatterings.
- 3) Intermediate p<sub>T</sub> region: hadron type dependence observed, due to the vacuum hadronic cross sections used in the hadronic model [] the NCQ-scaling explanation may not be unique!
- 4) High precision data on v₂ of K\*, □, □, □\*, □\* are important!